Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
Ars Combinatoria
Article . 2025 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Outer independent double Roman domination in unicyclic and bicyclic graphs

Outer independent double Roman domination in unicyclic and bicyclic graphs.
Authors: Sakineh Nazari-Moghaddam; Mustapha Chellali; Seyed Mahmoud Sheikholeslami;

Outer independent double Roman domination in unicyclic and bicyclic graphs

Abstract

An outer independent double Roman dominating function (OIDRDF) of a graph \( G \) is a function \( f:V(G)\rightarrow\{0,1,2,3\} \) satisfying the following conditions: (i) every vertex \( v \) with \( f(v)=0 \) is adjacent to a vertex assigned 3 or at least two vertices assigned 2; (ii) every vertex \( v \) with \( f(v)=1 \) has a neighbor assigned 2 or 3; (iii) no two vertices assigned 0 are adjacent. The weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent double Roman domination number \( \gamma_{oidR}(G) \) is the minimum weight of an OIDRDF on \( G \). Ahangar et al. [Appl. Math. Comput. 364 (2020) 124617] established that for every tree \( T \) of order \( n \geq 4 \), \( \gamma_{oidR}(T)\leq\frac{5}{4}n \) and posed the question of whether this bound holds for all connected graphs. In this paper, we show that for a unicyclic graph \( G \) of order \( n \), \( \gamma_{oidR}(G) \leq \frac{5n+2}{4} \), and for a bicyclic graph, \( \gamma_{oidR}(G) \leq \frac{5n+4}{4} \). We further characterize the graphs attaining these bounds, providing a negative answer to the question posed by Ahangar et al.

Keywords

Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), bicycle graphs, Roman domination, unicycle graphs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!