Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
Ars Combinatoria
Article . 2024 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Outer Independent Double Roman Domination Stability in Graphs

Outer independent double Roman domination stability in graphs.
Authors: Seyed Mahmoud Sheikholeslami; M. Esmaeili; Lutz Volkmann;

Outer Independent Double Roman Domination Stability in Graphs

Abstract

An outer independent double Roman dominating function (OIDRDF) on a graph G is a function f : V ( G ) → { 0 , 1 , 2 , 3 } having the property that (i) if f ( v ) = 0 , then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then the vertex v must have at least one neighbor w with f ( w ) ≥ 2 and (ii) the subgraph induced by the vertices assigned 0 under f is edgeless. The weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent double Roman domination number γ o i d R ( G ) is the minimum weight of an OIDRDF on G . The γ o i d R -stability ( γ − o i d R -stability, γ + o i d R -stability) of G , denoted by s t γ o i d R ( G ) ( s t − γ o i d R ( G ) , s t + γ o i d R ( G ) ), is defined as the minimum size of a set of vertices whose removal changes (decreases, increases) the outer independent double Roman domination number. In this paper, we determine the exact values on the γ o i d R -stability of some special classes of graphs, and present some bounds on s t γ o i d R ( G ) . In addition, for a tree T with maximum degree Δ , we show that s t γ o i d R ( T ) = 1 and s t − γ o i d R ( T ) ≤ Δ , and characterize the trees that achieve the upper bound.

Keywords

Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.), double Roman domination, outer independent double Roman domination stability, outer independent double Roman domination

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!