Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Thesis . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Thesis . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.25560/14...
Other literature type . 2011
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trafficking of Mesenchymal Stem Cells

Authors: Hahnel, Mark;

Trafficking of Mesenchymal Stem Cells

Abstract

In adult life mesenchymal stem cells (MSCs) reside primarily in the bone marrow and are defined according to their ability to self-renew and differentiate into tissues of mesodermal origin. Due to their immuno-modulatory properties and ability to form cartilage and bone, MSCs have clinical potential, for the treatment of autoimmune diseases and tissue repair. This project determines the chemokine receptor profile on murine bone marrow MSCs at early and late passage and on human MSCs derived from a range of fetal tissues including fetal blood, bone marrow, amniotic fluid and placenta. The overwhelming result from this analysis is the consistency across species and tissue source with respect to chemokine receptor profiles. In addition it is clear that expression of specific chemokine receptors defines sub-populations of MSCs. Currently, clinical trials using MSCs have relied on continued in vitro culture in order to obtain sufficient numbers for treatment. Here, MSCs have been shown to lose external chemokine receptor expression and associated chemotactic ability, whilst growing in size upon continued culture. All cultured MSCs investigated in this thesis were shown to be a heterogeneous population of stem cells and progenitors that contained ‘true’ MSCs within its number. This thesis investigates a pharmacological approach to mobilise endogenous MSCs from the bone marrow, increasing their numbers in the blood. It has previously been reported that administration of VEGF-A over 4 days followed by a single dose with a CXCR4 antagonist (AMD3100) causes selective mobilisation of MSCs into blood. The VEGF biology of this response has been interrogated. MSCs were shown to express high levels of VEGFR-1 and lower levels of VEGFR-2 on the cell surface but do not express VEGFR-3. By blocking VEGFR-1 with mAbs during VEGF-A165 treatment, a ten-fold increase in MSC mobilisation in response to AMD3100 was recorded, while treating with VEGFR-2 blocking mAbs had no effect. Using VEGF isoforms specific for VEGFR-1 and VEGFR-2 (PlGF and VEGF-E respectively), it was determined that MSC mobilisation was dependant on activation of VEGFR-2 and not VEGFR-1. PαS cells are a subset of MSCs found in the murine bone marrow that are PDGFRα+, Sca-1+, CD45-, Ter119-. Further characterisation of mobilised mMSCs by flow cytometric analysis of PαS cells, now provides a way to investigate the biology of MSCs, both in their steady state in vivo and in models of injury and inflammation. Molecular mechanisms lying downstream of VEGFR-2 have been explored and it has been shown that MMPs play a critical role in mobilisation. The use of drugs to mobilise MSCs into the blood may provide a cost effective, non-invasive treatment to promote tissue repair.

Related Organizations
Keywords

570, 610

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green