
We have employed finite element analysis to develop computational Seebeck coefficient metrology simulations. This approach enables a unique exploration of multiple probe arrangements and measurement techniques within the same temporal domain. To demonstrate the usefulness of this approach, we have performed these Seebeck coefficient measurement simulations to quantitatively explore perturbations to voltage and temperature correspondence, by comparing simultaneous and staggered data acquisition techniques under the quasi-steady-state condition. The results indicate significant distortions to the Seebeck coefficient and a strong dependence on the time delay, the acquisition sequence, and the probe arrangement.
Article
Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
