
The increased power of small computers makes the use of parameter estimation methods attractive. Such methods have a number of uses in analytical chemistry. When valid models are available, many methods work well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models. Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive filtering methods that result have a number of applications in analytical chemistry.
adaptive Kalman filtering, Chemistry, analytical chemistry, multicomponent analysis, parameter estimation, automated covariance estimation, Inference from stochastic processes and prediction
adaptive Kalman filtering, Chemistry, analytical chemistry, multicomponent analysis, parameter estimation, automated covariance estimation, Inference from stochastic processes and prediction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
