
doi: 10.5951/mt.46.2.0071
The development of hyperbolic functions in the traditional trigonometry courses (if this is ever reached during a one-semester instruction) is usually confined to purely algebraic methods. However effective the latter procedures may be, it is doubtful that a student realizes the import of the properties of hyperbolic functions. The student is never offered the opportunity to realize the fact that, essentially, the properties of hyperbolic functions are analogous to the properties of circular functions. It is possible, however, to develop the properties of hyperbolic functions in a manner which is analogous to the processes which are employed in the development of circular functions. Thus, it is proposed to examine and to develop hyperbolic functions by means of a geometric approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
