Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ African Journal of B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
African Journal of Biotechnology
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
African Journal of Biotechnology
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/6e...
Other literature type . 2016
Data sources: Datacite
https://dx.doi.org/10.60692/qr...
Other literature type . 2016
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc)

English
Authors: Ali, Ammar Mohammed Ahmed; El-Nour, Mawahib ElAmin Mohamed; Yagi, Sakina Mohamed;

Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc)

Abstract

La présente étude visait à induire le cal, l'organogenèse directe et indirecte du gingembre (Zingiber officinale Rosc) en utilisant un milieu Murashige et Skoog (MS) enrichi avec différentes concentrations et combinaisons de régulateurs de croissance. Des segments de pointe, de feuille et de racine in vitro ont été utilisés comme explants pour induire le cal par un milieu MS contenant (0,00 comme témoin, 0,5, 1,00, 2,00 et 3,00 mg/L) d'acide 2,4-dichlorophénoxyacétique (2,4-D). Le cal induit a été repiqué sur MS +2,4-D à différentes concentrations (0,5, 1,00, 2,00 et 3,00 mg/L) et un concentration 0,5 mg/L de 6-benzyl amino purine (BAP) a été utilisé.Les bourgeons germants (environ 1 à 1,5 cm) ont été utilisés comme explants pour les pousses directes et l'induction des racines par le milieu MS + 2,00, 3,00 et 4,5 mg/L de BAP.Callus induit par 1,00 mg/L 2,4-D a été régénéré sur MS + 0,5 mg/L 2,4-D pour obtenir un cal vert, ce cal a été transféré sur le milieu MS avec des combinaisons de 0,5 mg/L d'acide 1-naphtalène acétique (ANA) avec différentes concentrations de BAP (1,00, 2,00,3,00 et 4,00 mg/L) pour organogenèse indirecte.Les résultats révèlent que, pour l'induction du cal, le cal n'était induit que par l'explant de la pointe de la pousse à toutes les concentrations de 2,4-D. Le poids frais du cal le plus élevé a été obtenu par 1,00 mg/L de 2,4-D (1,302 ± 0,09) g que celui induit par un autre traitement (p < 0,05). Dans le cas du cal induit par la sous-culture, le poids frais du cal le plus élevé initié était de 1,509 ± 0,00 g par 0,5 mg/L de 2,4-D. Pour l'organogenèse directe, 4,5 mg/L de BAP ont montré le plus grand nombre de pousses et de racines in vitro, 4 ± 0,35 pousses et 15 ± 0,46 racines par explant.Pour l'organogenèse indirecte, les meilleures pousses et racines initiées étaient de 2 ± 0,21 pousses et 22 ± 0,33 racines par combinaison de 1,00 mg/L de BAP +0,5 mg/L d'ANA.

El presente estudio tuvo como objetivo inducir el callo, la organogénesis directa e indirecta del jengibre (Zingiber officinale Rosc) mediante el uso de medio Murashige y Skoog (MS) fortificado con diferentes concentraciones y combinaciones de reguladores del crecimiento. Se utilizaron segmentos de hojas y raíces in vitro como explantes para inducir el callo mediante medio MS que contenía (0.00 como control, 0.5, 1.00, 2.00 y 3.00 mg/L) de ácido 2,4-diclorofenoxiacético (2,4-D). El callo inducido se subcultivó en MS+2,4-D a diferentes concentraciones (0.5, 1.00, 2.00 y 3.00 mg/L) y uno concentración 0.5 mg/L de 6-bencil amino purina (BAP) .Los brotes (aproximadamente 1 a 1.5 cm) se utilizaron como explantes para la inducción directa de brotes y raíces por medio MS + 2.00, 3.00 y 4.5 mg/L de BAP. El callo inducido por 1.00 mg/L 2,4-D se regeneró en MS + 0.5 mg/L 2,4-D para obtener un callo verde, este callo se transfirió a medio MS con combinaciones de 0.5 mg/L de ácido 1-naftalenoacético (NAA) con diferentes concentraciones de BAP (1.00, 2.00,3.00 y 4.00 mg/L) para organogénesis indirecta. Los resultados revelan que, para la inducción del callo, el callo solo se indujo a partir del explante de la punta del brote en todas las concentraciones de 2,4-D. El peso fresco del callo más alto se obtuvo con 1,00 mg/L de 2,4-D (1,302 ± 0,09) g que el inducido por otro tratamiento (p < 0,05). En el caso del callo inducido por subcultivo, el peso fresco del callo más alto iniciado fue 1,509 ± 0,00 g por 0,5 mg/L de 2,4-D. Para la organogénesis directa, 4,5 mg/L de BAP mostraron el mayor número de brotes y raíces in vitro, 4 ± 0,35 brotes y 15 ± 0,46 raíces por explante. Para la organogénesis indirecta, los mejores brotes y raíces iniciados fueron 2 ± 0,21 brotes y 22 ± 0,33 raíces por combinación de 1,00 mg/L de BAP + 0,5 mg/L de NAA.

The present study aimed to induce callus, direct and indirect organogenesis of ginger (Zingiber officinale Rosc) by using Murashige and Skoog (MS) medium fortified with different concentrations and combinations of growth regulators.Shoot tip, in vitro leaf and root segments were used as explants to induce callus by MS medium containing (0.00 as control, 0.5, 1.00, 2.00 and 3.00 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D).Callus induced was subcultured on MS+2,4-D at different concentrations (0.5, 1.00, 2.00 and 3.00 mg/L) and one concentration 0.5 mg/L of 6-benzyl amino purine (BAP) was used.The sprouting buds (about 1 to 1.5 cm) were used as explants for direct shoots and roots induction by MS medium + 2.00, 3.00 and 4.5 mg/L of BAP.Callus induced by 1.00 mg/L 2,4-D was regenerated on MS + 0.5 mg/L 2,4-D to obtain a green callus, this callus was transferred to MS medium with combinations of 0.5 mg/L 1-naphthaleneacetic acid (NAA) with different concentrations of BAP (1.00, 2.00,3.00 and 4.00 mg/L) for indirect organogenesis.The results reveals that, for callus induction, callus was only induced from shoot tip explant in all concentrations of 2,4-D.The highest callus fresh weight was obtained by 1.00 mg/L of 2,4-D (1.302 ± 0.09) g than that induced by other treatment (p < 0.05).In the case of callus induced by subculture, the highest callus fresh weight initiated was 1.509 ± 0.00 g by 0.5 mg/L 2,4-D.For direct organogenesis, 4.5 mg/L BAP showed the highest number of in vitro shoots and roots, 4 ± 0.35 shoots and 15 ± 0.46 roots per explants.For indirect organogenesis, the best shoots and roots initiated were 2 ± 0.21 shoots and 22 ± 0.33 roots by combination of 1.00 mg/L BAP+0.5 mg/L NAA.

تهدف هذه الدراسة إلى حث الكالس، والتكوين العضوي المباشر وغير المباشر للزنجبيل (Zingiber officinale Rosc) باستخدام وسط Murashige و Skoog (MS) المدعم بتركيزات مختلفة ومجموعات من منظمات النمو. تم استخدام طرف اللقطة، في ورقة المختبر وقطاعات الجذر كمتفجرات للحث على الكالس بواسطة وسيط MS يحتوي على (0.00 كعنصر تحكم، 0.5، 1.00، 2.00 و 3.00 مجم/لتر) من حمض 2،4 -ثنائي كلورو فينوكسي أسيتيك (2،4 - D). تمت زراعة الكالوس المستحث على MS +2،4 - D بتركيزات مختلفة (0.5، 1.00، 2.00 و 3.00 مجم/لتر) وواحد تم استخدام تركيز 0.5 ملغ/لتر من 6 -بنزيل أمينو بيورين (BAP). تم استخدام براعم التنبت (حوالي 1 إلى 1.5 سم) كبراعم للبراعم المباشرة وتحريض الجذور بواسطة MS medium + 2.00، 3.00 و 4.5 ملغ/لتر من BAP. تم تجديد الكالوس الناجم عن 1.00 ملغ/لتر 2،4 - D على MS + 0.5 ملغ/لتر 2،4 - D للحصول على دشبذ أخضر، تم نقل هذا الكالوس إلى MS medium بمجموعات من 0.5 ملغ/لتر 1 -حمض النفثالين الخل (NAA) بتركيزات مختلفة من BAP (1.00، 2.00،3.00 و 4.00 ملغ/لتر) لـ تكوين الأعضاء غير المباشر. تكشف النتائج أنه بالنسبة لتحريض الكالس، تم تحفيز الكالس فقط من طرف الطلقة المزروعة في جميع تركيزات 2،4 - D. تم الحصول على أعلى وزن طازج للدشبذ بمقدار 1.00 ملغم/لتر من 2،4 - D (1.302 ± 0.09) جم من ذلك المستحث بمعالجة أخرى (p < 0.05). في حالة الكالس الناجم عن الثقافة الفرعية، كان أعلى وزن طازج للدشبذ هو 1.509 ± 0.00 جم بمقدار 0.5 ملغم/لتر 2،4 - D. بالنسبة للتكوين العضوي المباشر، أظهر 4.5 ملغم/لاب أعلى عدد من البراعم والجذور في المختبر، 4 ± 0.35 براعم و 15 ± 0.46 جذور لكل براعم. بالنسبة للتكوين العضوي غير المباشر، كانت أفضل البراعم والجذور التي بدأت 2 ± 0.21 براعم و 22 ± 0.33 جذور بمزيج من 1.00 ملغم/لتر B + 0.5 ملغم/لتر NAA.

Related Organizations
Keywords

Pharmacology, Toxicology and Pharmaceutics, Organogenesis, Ginger, Horticulture, Biochemistry, Gene, Phytochemical, Pharmacological, and Toxicological Properties of Ginger, Callus, In vitro, Biochemistry, Genetics and Molecular Biology, Zingiber officinale, Health Sciences, Explant culture, Molecular Biology, Biology, Callus induction, growth regulators, Zingiber officinale Rosc, organogenesis, Murashige and Skoog medium, Elicitor Signal Transduction for Metabolite Production, Pharmacology, Herbal Medicine for Neurological Disorders, Shoot, Botany, Life Sciences, Traditional medicine, Chemistry, Complementary and alternative medicine, Medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
gold