
Metaheuristic algorithms are optimization algorithms that are used to address complicated issues that cannot be solved using standard approaches. These algorithms are inspired by natural processes such as genetics, swarm behavior, and evolution, and they are used to explore a broad search space to identify the global optimum of a problem. Genetic algorithms, particle swarm optimization, ant colony optimization, simulated annealing, and tabu search are examples of popular metaheuristic algorithms. These algorithms have been widely utilized to address complicated issues in domains like as engineering, finance, and computer science. In general, the history of metaheuristic algorithms spans several decades and involves the development of various optimization algorithms that are inspired by natural systems. Metaheuristic algorithms have become a valuable tool in solving complex optimization problems in various fields, and they are likely to continue to play an important role in the development of new technologies and applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
