
Let $\mathcal{H}=(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ on the elements in $E$ is connected. We consider hypergraphs defined on a host graph. Given a graph $G=(V,E)$, with $c:V\to\{\R,\B\}$ and a collection of connected subgraphs $\mathcal{H}$ of $G$, a primal support is a graph $Q$ on $\B(V)$ such that for each $H\in \mathcal{H}$, the subgraph $Q[\B(H)]$ on vertices $\B(H)=H\cap c^{-1}(\B)$ is connected. A \emph{dual support} is a graph $Q^*$ on $\mathcal{H}$ s.t. for each $v\in X$, the subgraph $Q^*[\mathcal{H}_v]$ is connected, where $\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}$. We present sufficient conditions on the host graph and hyperedges so that the resulting support comes from a restricted family. We primarily study two classes of graphs: $(1)$ If the host graph has genus $g$ and the hypergraphs satisfy a topological condition of being \emph{cross-free}, then there is a primal and a dual support of genus at most $g$. $(2)$ If the host graph has treewidth $t$ and the hyperedges satisfy a combinatorial condition of being \emph{non-piercing}, then there exist primal and dual supports of treewidth $O(2^t)$. We show that this exponential blow-up is sometimes necessary. As an intermediate case, we also study the case when the host graph is outerplanar. Finally, we show applications of our results to packing and covering, and coloring problems on geometric hypergraphs.
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
