Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5817/cz.mun...
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Hypergraph Supports.

Authors: Raman, Rajiv; Singh, Karamjeet;

On Hypergraph Supports.

Abstract

Let $\mathcal{H}=(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ on the elements in $E$ is connected. We consider hypergraphs defined on a host graph. Given a graph $G=(V,E)$, with $c:V\to\{\R,\B\}$ and a collection of connected subgraphs $\mathcal{H}$ of $G$, a primal support is a graph $Q$ on $\B(V)$ such that for each $H\in \mathcal{H}$, the subgraph $Q[\B(H)]$ on vertices $\B(H)=H\cap c^{-1}(\B)$ is connected. A \emph{dual support} is a graph $Q^*$ on $\mathcal{H}$ s.t. for each $v\in X$, the subgraph $Q^*[\mathcal{H}_v]$ is connected, where $\mathcal{H}_v=\{H\in\mathcal{H}: v\in H\}$. We present sufficient conditions on the host graph and hyperedges so that the resulting support comes from a restricted family. We primarily study two classes of graphs: $(1)$ If the host graph has genus $g$ and the hypergraphs satisfy a topological condition of being \emph{cross-free}, then there is a primal and a dual support of genus at most $g$. $(2)$ If the host graph has treewidth $t$ and the hyperedges satisfy a combinatorial condition of being \emph{non-piercing}, then there exist primal and dual supports of treewidth $O(2^t)$. We show that this exponential blow-up is sometimes necessary. As an intermediate case, we also study the case when the host graph is outerplanar. Finally, we show applications of our results to packing and covering, and coloring problems on geometric hypergraphs.

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid