
arXiv: 2107.14191
It is suspected that the quantum evolution equations describing the micro-world as we know it are of a special kind that allows transformations to a special set of basis states in Hilbert space, such that, in this basis, the evolution is given by elements of the permutation group. This would restore an ontological interpretation. It is shown how, at low energies per particle degree of freedom, almost any quantum system allows for such a transformation. This contradicts Bell’s theorem, and we emphasise why some of the assumptions made by Bell to prove his theorem cannot hold for the models studied here. We speculate how an approach of this kind may become helpful in isolating the most likely version of the Standard Model, combined with General Relativity. A link is suggested with black hole physics.
High Energy Physics - Theory, Quantum Physics, quant-ph, High Energy Physics - Theory (hep-th), gr-qc, hep-th, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology
High Energy Physics - Theory, Quantum Physics, quant-ph, High Energy Physics - Theory (hep-th), gr-qc, hep-th, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
