
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Many processors are available for separating particles and/or cells, but few can match the capacity of flow cytometry – in particular the sorting component. Several aspects unique to cell sorting give it such power. First, particles can be separated based on size, complexity, fluorescence, or any combination of these parameters. Second, it is entirely possible to separate particles under sterile conditions, making this technology very advantageous for selecting cells for culture. Third, when this sterile environment is combined with a highly controlled safety system, it is possible to safely sort and separate highly pathogenic organisms or even cells containing such pathogens. The very latest instruments available add even more power by introducing the ability to sort cells based on spectral unmixing. This last option requires incredible computer power and very-high-speed processing, since the sort decision is based on computational algorithms derived from the spectral mixture being analyzed.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
