
The main purpose of this chapter is to describe the application of perturbation expansion techniques to the solution of differential equations. Approximate expressions are generated in the form of asymptotic series. These may not and often do not converge but in a truncated form of only two or three terms, provide a useful approximation to the original problem. These analytical techniques provide an alternative to the direct computer solution. Before attempting to solve these problems numerically, one should have an awareness of the perturbation approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
