
This chapter is primarily concerned with natural radioactive decay. Generally speaking, there are two types of natural radioactive decays: alpha decays “which contain two neutrons and two protons” emitted from radon gas; additionally, nuclear decay by emission of photons (γ-decay). This chapter aims to describe γ and alpha loss of nuclei and demonstrates how to measure the radioactive material naturally using solid-state nuclear track detector (SSNTD) and high purity Germanium detector (HPGD). Also, methods of measuring the different characteristics of the alpha particle using the track profile technique (TPT) will be presented. Finally, results will be presented in the alpha and radon measurements. The concentration of aerosols has attracted much attention by many researchers in the past decade. Research has shown that aerosols are responsible for harmful chemical reactions that lead to the physical degradation of the stratospheric ozone layer. Moreover, aerosols increase the risk of developing cancer in humans when inhaled in large proportions. Therefore, neutron activation analysis (NAA) is a very important application to measure these concentrations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
