Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2015
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/60761...
Part of book or chapter of book . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chronic Lymphocytic Leukemia — Microenvironment and B Cells

Authors: Rositsa Hristova Vladimirova; Elena Vikentieva; MargaritaGuenova; Dora N. Popova;

Chronic Lymphocytic Leukemia — Microenvironment and B Cells

Abstract

Chronic lymphocytic leukemia (CLL) has been considered as an accumulative disease deriving from defects in apoptosis, but recent studies showed that CLL is a dynamic process in which monoclonal B cells proliferate within pseudofollicular proliferation centers. Microenvironmental interactions are essential for the survival and prolifera‐ tion of CLL cells. The cell traffic between blood and secondary lymphoid tissues is controlled by tissue-specific chemokines and their specific receptors on B lympho‐ cytes. Interstitial cell migration and adhesion events, predisposed by activational stimuli, determine CLL cell localization. Stimulation through the B cell receptor plays an important role in the expansion of the malignant clone in CLL. B cell receptors become activated either in an antigen-dependent or in an antigen-independent fashion in the secondary lymphatic tissues. However, low expression of the BCR correlates with reduced induction of protein tyrosine kinase activity and defective intracellular calcium mobilization and tyrosine phosphorylation. In contrast to normal B cells, leukemic cells are poor antigen presenting cells. This is due to the fact that leukemic cells have a reduced expression of costimulatory molecules and defects in the formation of immunological synapse with T cells. Increased surface expression of the costimulatory molecules on CLL cells correlates with their proliferation. At present, conventional treatments are not directed to interactions between CLL cells and their microenvironment, which is probably one of the reasons why, despite the significant progress in treatment, the disease still remains incurable. In this regard, identifying key biomarkers of intercellular interactions of neoplastic CLL population in comparison with clinical laboratory abnormalities in CLL enable clarification of essential processes in the development of the disease, and can be the basis for © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. stratifying patient groups in order to optimize therapeutic approaches, which will make them relevant and promising.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid
Related to Research communities
Cancer Research