Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2013
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY NC
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.5772/54944...
Part of book or chapter of book . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanoparticles Based on Chitosan Derivatives

Authors: ZAMBITO, YLENIA;

Nanoparticles Based on Chitosan Derivatives

Abstract

A tremendous effort has been and is currently being devoted to the research in the field of pharmaceutical nanotechnology. Several peculiar properties of gelled polymeric nanosize (<1μm) particulate systems have been reported, among which the ability to encapsulate either small molecular weight or macromolecular active principles in mild conditions and protect them from degradation by the harsh pH conditions or enzymes they may encounter in the organism, promote transport of actives across mucosal barriers, undergo internalization by cells thereby carrying actives into them. Chitosan, a copolymer of glucosamine and Nacetylglucosamine, obtained by deacetylation of the naturally-occurring chitin, has been studied as a basic biomaterial for preparing pharmaceutical nanoparticles, because it is biodegradable and has a very low toxicity [1-5] besides an ability to promote transport of drugs, peptides and proteins across mucosal barriers [6-10]. The preparation procedures of chitosan nanoparticles, their characterization for drug encapsulation efficiency, physical and biophar‐ maceutical properties, and toxicity have been covered by recent reviews (11,12). Chitosan has been subjected to derivatization, taking advantage of the reactivity of the primary amino group in position 2, or the hydroxyl group in position 6 of its repeating unit, glucosamine. The derivatization changed the physicochemical, biopharmaceutical and biological properties of the parent chitosan and each derivative type lent itself to preparing nanoparticles with their own physical properties (size, shape, surface charge), drug encapsulation and release capa‐ bility, biopharmaceutical and biological properties (mucoadhesivity, ability to promote drug transport across biological barriers, aptitude for internalization within cells, citotoxicity).

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
hybrid