
doi: 10.5772/51435
What does it mean that the cosmic radio wave flux density varies with the passage of time is an interesting question; the radio wave is of the quasar, a system of galaxy, which is distributed in our universe from a few billions of light years to the distanse close to the big bang age and has been radiating immense electromagnetic energy from it by the synchrotron radiation that we may able to make a measurement of the flux density at micro wave bands with a radio interferometer[3,4]. A group of radio observers and astronomers has been monitoring daily so far over several years extragalactic radio sources (radio galaxies, quasars, etc.) and the monitored data were kindly shared with us who were interested in using for analysis[5]. In a few recent decades, the chaos and fractal theory has been intensively studied and developed in the fields of mathematics, computer numerical analysis, natural sciences and technologies[1], and in same decades, the nonlinear time series analysis methods have been developed intensely based on the newly understood ideas of the theory for analyzing the nonlinear phenonena[2].
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
