
Les algorithmes génétiques sont un paradigme de recherche qui applique les principes de la biologie évolutive (croisement, mutation, sélection naturelle) afin de traiter les espaces de recherche insolubles. La puissance et le succès de l'AG sont principalement atteints par la diversité avec les individus d'une population qui évoluent, en parallèle, selon le principe de la survie du plus apte. En général, les algorithmes génétiques résolvent des problèmes d'optimisation combinatoire qui dans (Goldberg, 1989) sont mentionnés, ce qui implique un grand nombre de réponses associées à une croissance exponentielle des solutions potentiellement réalisables en fonction de l'ampleur du problème. Dans une AG standard, la diversité des individus est obtenue et maintenue à l'aide du croisement et de la mutation des opérateurs génétiques qui permettent à l'AG de trouver des solutions réalisables et d'éviter une convergence prématurée vers un maximum local (Holland, 1975).
Los algoritmos genéticos son un paradigma de búsqueda que aplica los principios de la biología evolutiva (cruce, mutación, selección natural) para tratar con espacios de búsqueda intratables. El poder y el éxito de GA se logran principalmente por la diversidad con los individuos de una población que evoluciona, en paralelo, siguiendo el principio de la supervivencia del más apto. En general, los algoritmos genéticos resuelven problemas de optimización combinatoria que en (Goldberg, 1989) se mencionan, esto implica un gran número de respuestas asociadas a un crecimiento exponencial en soluciones potencialmente factibles según la magnitud del problema. En un GA estándar, la diversidad de los individuos se obtiene y mantiene utilizando los operadores genéticos de cruce y mutación que permiten al GA encontrar soluciones factibles y evitar la convergencia prematura a un máximo local (Holland, 1975).
Genetic Algorithms are a search paradigm that applies principles of evolutionary biology (crossover, mutation, natural selection) in order to deal with intractable search spaces. The power and success of GA are mostly achieved by the diversity with the individuals of a population which evolve, in parallel, following the principle of the survival of the fittest. In general, the genetic algorithms resolve combinatorial optimization problems that in (Goldberg, 1989) are mentioned, this implies a large number of responses associated with an exponential growth in solutions potentially feasible according to the magnitude of the problem. In a standard GA the diversity of the individuals is obtained and maintained using the genetic operators crossover and mutation which allow the GA to find feasible solutions and avoid premature convergence to a local maximum (Holland, 1975).
الخوارزميات الجينية هي نموذج بحث يطبق مبادئ البيولوجيا التطورية (العبور، الطفرة، الانتقاء الطبيعي) من أجل التعامل مع مساحات البحث المستعصية. تتحقق قوة الجمعية العامة ونجاحها في الغالب من خلال التنوع مع أفراد السكان الذين يتطورون، بالتوازي، باتباع مبدأ بقاء الأصلح. بشكل عام، تحل الخوارزميات الجينية مشاكل التحسين التوافقي التي تم ذكرها في (غولدبرغ، 1989)، وهذا يعني عددًا كبيرًا من الاستجابات المرتبطة بالنمو الأسي في الحلول التي يمكن أن تكون مجدية وفقًا لحجم المشكلة. في التخدير العام القياسي، يتم الحصول على تنوع الأفراد والحفاظ عليه باستخدام تقاطع العوامل الوراثية والطفرة التي تسمح للتخدير العام بإيجاد حلول مجدية وتجنب التقارب المبكر إلى الحد الأقصى المحلي (هولندا، 1975).
Genetic Programming, Inheritance (genetic algorithm), Epistemology, Gene, Quantum mechanics, Semantic Genetic Programming, Relaxation (psychology), Artificial Intelligence, Machine learning, Genetics, Swarm Intelligence Optimization Algorithms, Constraint Handling, Biology, Genetic Algorithms, Physics, Mechanism (biology), Computer science, FOS: Philosophy, ethics and religion, Algorithm, Philosophy, Computational Theory and Mathematics, Genetic algorithm, Application of Genetic Programming in Machine Learning, FOS: Biological sciences, Computer Science, Physical Sciences, Nature-Inspired Algorithms, Simple (philosophy), Multiobjective Optimization in Evolutionary Algorithms, Neuroscience
Genetic Programming, Inheritance (genetic algorithm), Epistemology, Gene, Quantum mechanics, Semantic Genetic Programming, Relaxation (psychology), Artificial Intelligence, Machine learning, Genetics, Swarm Intelligence Optimization Algorithms, Constraint Handling, Biology, Genetic Algorithms, Physics, Mechanism (biology), Computer science, FOS: Philosophy, ethics and religion, Algorithm, Philosophy, Computational Theory and Mathematics, Genetic algorithm, Application of Genetic Programming in Machine Learning, FOS: Biological sciences, Computer Science, Physical Sciences, Nature-Inspired Algorithms, Simple (philosophy), Multiobjective Optimization in Evolutionary Algorithms, Neuroscience
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
