
doi: 10.5772/34872
The scanning electron microscope (SEM) can be used for far more than just obtaining images. It has a long tradition of being used to directly manipulate a sample to create various surface structures. The scanning coils within the microscope can be utilized for directing the electron beam in a controlled manner rather than simply raster across the surface as is used in imaging. By focusing the electron beam on a given area of the sample, it can be used to induce various localized changes to the surface of a material with a high degree of precision. There are several established techniques by which an electron beam can be used to create patterned structures upon a surface, the most common of which is electron beam lithography. Electron beam lithography is a multi-step process in which a sacrificial polymer layer is first deposited onto the sample that can achieve feature sizes down to ten nanometer length scales (Broers et al. 1996; Liu et al. 2002). The electron beam can also be used to locally induce or break bonds to pattern nanostructures (Mendes et al. 2004) or simply burn material away from selected areas of the sample (Egerton et al. 2004). In essentially every case, the electron beam interacts with the surface to locally alter or break chemical bonds to form patterned surface structures with very high precision.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
