Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2012
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cha...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/32481...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metabotropic Receptors for Glutamate and GABA

Authors: Laurent Prézeau; Cyril Goudet; Philippe Rondard; Julie Kniazeff; Jean-Philippe Pin; Gregory D. Stewart;

Metabotropic Receptors for Glutamate and GABA

Abstract

G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and due to their ubiquitous expression and vast array of functions they present attractive targets for the treatment of a wide number of diseases and disorders. Accordingly, they represent up to 30% of targets of current therapeutics (Overington et al., 2006). Despite the capacity of GPCRs to modulate many (patho-)physiological functions there is a high attrition rate with regard to new compounds entering clinical trials. There are many reasons for the number of failed drug-like compounds such as non-specificity, unfavourable pharmacokinetic profile and lack of clinical efficacy. In this regard, molecules targeting neurotransmitter receptors in the CNS traditionally have poor side-effect profiles due to the high concentrations required to pass the blood-brain barrier. There remain many specific challenges in drug discovery such as promiscuous GPCR-effector coupling; differential celland tissue-specific effects; ligand-induced changes in receptor trafficking; and proteinprotein interactions and receptor oligomerisation (Galandrin et al., 2007; Hanyaloglu and von Zastrow, 2008; Kniazeff et al., 2011; Wettschureck and Offermanns, 2005).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid
Related to Research communities