Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2012
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/28687...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

A Novel Artificial Vitreous Substitute - Foldable Capsular Vitreous Body

Authors: Gao, Qianying;

A Novel Artificial Vitreous Substitute - Foldable Capsular Vitreous Body

Abstract

The natural vitreous is a transparent, gelatinoid structure occupying four-fifths of the volume of the eye. It has a thin, membrane-like structure corresponding to the vitreous cortex that extends from the ora serrata to the posterior pole.1 It is somewhat spherical but slightly flattened meridionally, and it has a cup-shaped depression in its anterior side. It consists of about 99% water by weight, collagen fibers (types II, V/XI, VI, and IX), hyaluronic acid, opticin, fibrillin, and hyaluronan, which can maintain a certain spatial relationship with dipolar water molecules.1,2 However, very few cells are found in the vitreous body. These cells are mostly phagocytes that clear useless cellular debris and hyalocytes mainly found at the periphery and that produce hyaluronic acid and collagen. In human adults, the vitreous body has an approximate weight of 4 g, a density of 1.0053– 1.0089g cm-3, a refractive index of 1.3345–1.3348, and a PH range of 7.0–7.4. 3-5

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid