Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2012
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cha...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.5772/28142...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluid Dynamics Without Fluids

Authors: MARCON, MARCO;

Fluid Dynamics Without Fluids

Abstract

This chapter will discuss some interesting real applications where Fluid Dynamics equations found fruitful applications without dealing with "strictly speaking" fluids. In particular, thanks to the large set of analyses performed over different kinds of fluids in different operating and boundary conditions, a wide range of Computational Fluid Dynamics algorithms flourished tackling different aspects, from convergence rate, to stability according to the discretization, to multigrid and linearization problems. This robust and thorough background, both on theoretical and on practical aspects, made Computational Fluid Dynamics (CFD) appealing also to other sciences and applications where Fluid Dynamics equations, or similar equations very close to them, can be useful in describing complex phenomena not related to fluids. Some applications that will be discussed concern, e.g., Geometry of liquid snowflakes whose contour is growing steered by curvature, staring from a circle. Furthermore Image Restoration and Segmentation can also benefit from CFD since a set of evolutionary algorithms, based on level-set curvature flow equations, plays a fundamental role in steering active contours or snakes through the noise present in the image till the complete warping of the desired framed object. Also in this case advanced techniques like Ghost Fluids Method for two competing fluids dynamics can be used to separate different objects in images. Other interesting applications that will be described concern applicability of CFD to surface extraction from cloud of points. This is a common problem when complex clouds of points, representing 3D objects or scenes are obtained by laser scanners or multi-camera vision systems. These points represent unambiguous features from corners or sharp edges and the final 3D closed surface must fit on these points smoothly interpolating empty space between them. Also in this case CFD can provide useful tools to define the evolution of a 3D surface representing the border between two competing fluids, one representing the "inside" and the other the "outside" of the object itself. The two fluids evolution will stop when surface sticks on all the 3D points: the viscosity of the two fluids will control the smoothness of this surface that will wrap the cloud and turbulence is used tomodel injection into grooves or narrow holes. This chapter will also discuss another interesting application of CFD to robotic navigation in complex environments where we are looking for the best path, both in terms of length and distance from objects, through a set of obstacles, different terrains traversability or path slope. Also in this case an imaginary fluid with a predefined viscosity floods from the robot position through the whole environment, its front 27

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid