Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2011
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://doi.org/10.5772/21236...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dyeing in Computer Graphics

Authors: Yuki Morimoto; Daisaku Arita; Kenji Ono;

Dyeing in Computer Graphics

Abstract

In this chapter, we introduce a physically-based framework for visual simulation of dyeing. Since ancient times, dyeing has been employed to color fabrics in both industry and arts and crafts. Various dyeing techniques are practiced throughout the world, such as wax-resist dyeing (batik dyeing), hand drawing with dye and paste (Yuzen dyeing), and many other techniques Polakoff (1971); Yoshiko (2002). Tie-dyeing produces beautiful and unique dyed patterns. The tie-dyeing process involves performing various geometric operations (folding, stitching, tying, clamping, pressing, etc.) on a support medium, then dipping the medium into a dyebath. The process of dipping a cloth into a dyebath is called dip dyeing. The design of dye patterns is complicated by factors such as dye transfer and cloth deformation. Professional dyers predict final dye patterns based on heuristics; they tap into years of experience and intimate knowledge of traditional dyeing techniques. Furthermore, the real dyeing process is time-consuming. For example, clamp resist dyeing requires the dyer to fashion wooden templates to press the cloth during dyeing. Templates used in this technique can be very complex. Hand dyed patterns require the dyer’s experience, skill, and effort, which are combined with the chemical and physical properties of the materials. This allows the dyer to generate interesting and unique patterns. There are no other painting techniques that are associated with the deformation of the support medium. In contrast to hand dyeing, dyeing simulation allow for an inexpensive, fast, and accessible way to create dyed patterns. We focus on dye transfer phenomenon and woven folded cloth geometry as important factors to model dyed patterns. Some characteristic features of liquid diffusion on cloth that are influenced byweave patterns, such as thin spots andmottles are shown in Figure 1. Also, we adopted some typical models of adsorption isotherms to simply show adsorption. Figure 2 shows the simulated results obtained using our physics-based dyeing framework and a real dyed pattern. Figure 3 depicts the framework with a corresponding dyeing process.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid