Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2011
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY NC SA
Data sources: UnpayWall
https://doi.org/10.5772/14969...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Evolutionary Algorithm

Authors: Kezong Tang; Puchen Liu; Jingyu Yang; Xiaojing Yuan;

Linear Evolutionary Algorithm

Abstract

During the past three decades, global optimization problems (including single-objective optimization problems (SOP) and multi-objective optimization problems (MOP)) have been intensively studied not only in Computer Science, but also in Engineering. There are many solutions in literature, such as gradient projection method [1-3], Lagrangian and augmented Lagrangian penalty methods [4-6], and aggregate constraint method [7-9]. Among these methods, penalty function method is an important approach to solve global optimization problems.. To obtain the optimal solution of the original problem, the first step is to convert the optimization problem into an unconstrained optimization problem with a certain penalty function (such as Lagrangian multiplier). As the penalty multiplier approaches zero or infinite, the iteration point might approach optimal too. However, at the same time, the objective function of the unconstrained optimization problem might gradually become worse. This leads to increased computational complexity and long computational time in implementing the penalty function method to solve the complex optimization problems. In most of the research, both the original constraints and objective function are required to be smooth (or differentiable). However, in real-world problem, it is seldom to be able to guarantee a derivative for of the specific complex optimization problem. Hence, the development of efficient algorithms for handling complex optimization problems is of great importance. In this chapter, we present a new framework and algorithm that can solve problems belong to the family of stochastic search algorithms, often referred to as evolutionary algorithms. Evolutionary algorithms (EAs) are stochastic optimization techniques based on natural evolution and survival of the fittest strategy found in biological organisms. Evolutionary algorithms have been successfully applied to solve complex optimization problems in business [10,11], engineering [12,13], and science [14,15]. Some commonly used EAs are Genetic algorithms (GAs)[16], Evolutionary Programming (EP)[17], Evolutionary Strategy (ES)[18] and Differential Evolution (DE)[19]. Each of these methods has its own characteristics, strengths and weaknesses. In general, a EA algorithm generate a set of initial solutions randomly based on the given seed and population size. Afterwards, it will go through evolution operations such as cross-over and mutation before evaluated by the

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid