Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2021
Data sources: InTech
https://doi.org/10.5772/10041...
Part of book or chapter of book . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed Compressed Sensing of Sensor Data

Authors: Iyer, Vasanth; Singh, Dhananjay;

Distributed Compressed Sensing of Sensor Data

Abstract

Intelligent Information processing in distributed wireless sensor networks has many different optimizations by which redundancies in data can be eliminated, and at the same time the original source signal can be retrieved without loss. The data-centric nature of sensor network is modeled, which allows environmental applications to measure correlated data by periodic data aggregation. In the distributed framework, we explore how Compressed Sensing could be used to represent the measured signals in its sparse form, and model the framework to reproduce the individual signals from the ensembles in its sparse form expressed in equations(1,3). The processed signals are then represented with their common component; which is represented by its significant coefficients, and the variation components, which is also sparse are projected onto scaling and wavelet functions of the correlated component. The overall representation of the basis preserves the temporal (intra-signal) and spatial (intersignal) characteristics. All of these scenarios correspond to measuring properties of physical processes that change smoothly in time, and in space, and thus are highly correlated. We show by simulation that the framework using cross-layer protocols can be extended using sensor fusion, and data-centric aggregation, to scale to a large number of nodes.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green