
[Erdös 1965] mostrou que todo grafo G = (V, E) com m arestas admite um corte de arestas com cardinalidade pelo menos m/2. Neste artigo definimos a classe de grafos Half Cut como os grafos que admitem um corte de arestas com cardinalidade igual a [m/2]. Nós também damos exemplos de grafos tais como caminhos, ciclos e grafos completos que devem satisfazer condições especiais para que sejam do tipo Half Cut.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
