Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chinese Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chinese Journal of Cancer
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chinese Journal of Cancer
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY NC SA
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of SNP-containing regulatory motifs in the myelodysplastic syndromes model using SNP arrays and gene expression arrays

Authors: Fan, Jing; Dy, Jennifer G.; Chang, Chung-Che; Zhou, Xiaoboo;

Identification of SNP-containing regulatory motifs in the myelodysplastic syndromes model using SNP arrays and gene expression arrays

Abstract

Myelodysplastic syndromes have increased in frequency and incidence in the American population, but patient prognosis has not significantly improved over the last decade. Such improvements could be realized if biomarkers for accurate diagnosis and prognostic stratification were successfully identified. In this study, we propose a method that associates two state-of-the-art array technologies--single nucleotide polymor-phism(SNP) array and gene expression array--with gene motifs considered transcription factor-binding sites (TFBS). We are particularly interested in SNP-containing motifs introduced by genetic variation and mutation as TFBS. The potential regulation of SNP-containing motifs affects only when certain mutations occur. These motifs can be identified from a group of co-expressed genes with copy number variation. Then, we used a sliding window to identify motif candidates near SNPs on gene sequences. The candidates were filtered by coarse thresholding and fine statistical testing. Using the regression-based LARS-EN algorithm and a level-wise sequence combination procedure, we identified 28 SNP-containing motifs as candidate TFBS. We confirmed 21 of the 28 motifs with ChIP-chip fragments in the TRANSFAC database. Another six motifs were validated by TRANSFAC via searching binding fragments on co-regulated genes. The identified motifs and their location genes can be considered potential biomarkers for myelodysplastic syndromes. Thus, our proposed method, a novel strategy for associating two data categories, is capable of integrating information from different sources to identify reliable candidate regulatory SNP-containing motifs introduced by genetic variation and mutation.

Related Organizations
Keywords

DNA Copy Number Variations, Genotype, LOCI, VARIANTS, UNIPARENTAL DISOMY, Polymorphism, Single Nucleotide, CHROMOSOMAL-ABNORMALITIES, REGRESSION, Databases, Genetic, Genes, Regulator, Humans, GENOME-WIDE ASSOCIATION, POPULATION, Oligonucleotide Array Sequence Analysis, Binding Sites, Gene Expression Profiling, PROFILES, myelodysplastic syndromes, MICROARRAYS, Association study, genetic variation and mutation, VARIABLE SELECTION, Oncology, Myelodysplastic Syndromes, factor-binding sites, Original Article, transcription, Algorithms, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Green
gold