Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Animal Biosciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal Bioscience
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Animal Bioscience
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

CIDEB promotes lipid deposition in goat intramuscular adipocytes

Authors: Zhuohan Huang; Qi Li; Changheng Yang; Changhui Zhang; Lian Huang; Yaqiu Lin; Yong Wang; +2 Authors

CIDEB promotes lipid deposition in goat intramuscular adipocytes

Abstract

Objective: Cell death-inducing DNA fragmentation factor alpha-like effector B (CIDEB), a family member of Cell death-inducing DFF45-like effectors (CIDEs), is well known as a crucial regulator for lipid metabolic signaling pathways in various metabolic tissues and secretory glands. However, its role in regulating intramuscular fat (IMF) deposition in goat remains unclear.Methods: The expression vector pcDNA3.1-CIDEB was constructed and transfected into goat intramuscular preadipocytes; the overexpression and interference efficiency and expression of genes related to lipid metabolism were measured by Real-time polymerase chain reaction; the effect of overexpression of CIDEB and interfering with CIDEB on lipid droplet formation was observed by Oil Red O staining and glycerol phosphate oxidase-Trinder enzymatic reaction. Then RNA-Seq was used to investigate the metabolic pathway of CIDEB affecting adipocyte deposition in goat intramuscular preadipocytes.Results: Overexpression of CIDEB significantly promoted the lipid droplets accumulation and the triglyceride deposition, and significantly upregulated the expression of genes related to lipid metabolism. After overexpression of CIDEB in goat intramuscular preadipocytes, 171 differentially expressed genes (DEGs) were found, including 122 up-regulated and 49 down-regulated DEGs, and the top three significantly changed pathways filtered by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were Cocaine addiction, Amphetamine addiction and Malaria pathways. Conversely, the silencing of CIDEB significantly reduced lipid accumulation in goat intramuscular preadipocytes, meanwhile changing the expression of lipid metabolism genes. For CIDEB silencing, a total of 2140 DEGs were found, including 1252 up-regulated and 888 down-regulated DEGs, and the top three significantly changed pathways filtered by KEGG analysis were Ribosome, Thyroid hormone signaling pathway and Alzheimer disease.Conclusion: The expression of CIDEB can significantly promote lipid deposition of intramuscular adipocytes in goats, and these results provide important data to support further clarifying the mechanism of CIDEB gene on the regulation of intramuscular adipogenesis, and the IMF formation in goats.

Related Organizations
Keywords

cideb, intramuscular preadipocytes, QL1-991, lipid, lipid deposition, goat, Zoology, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold