Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings on Priva...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings on Privacy Enhancing Technologies
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TeleSparse: Practical Privacy-Preserving Verification of Deep Neural Networks

Authors: Maheri, Mohammad M; Haddadi, Hamed; Davidson, Alex;

TeleSparse: Practical Privacy-Preserving Verification of Deep Neural Networks

Abstract

Verification of the integrity of deep learning inference is crucial for understanding whether a model is being applied correctly. However, such verification typically requires access to model weights and (potentially sensitive or private) training data. So-called Zero-knowledge Succinct Non-Interactive Arguments of Knowledge (ZK-SNARKs) would appear to provide the capability to verify model inference without access to such sensitive data. However, applying ZK-SNARKs to modern neural networks, such as transformers and large vision models, introduces significant computational overhead. We present TeleSparse, a ZK-friendly post-processing mechanisms to produce practical solutions to this problem. TeleSparse tackles two fundamental challenges inherent in applying ZK-SNARKs to modern neural networks: (1) Reducing circuit constraints: Over-parameterized models result in numerous constraints for ZK-SNARK verification, driving up memory and proof generation costs. We address this by applying sparsification to neural network models, enhancing proof efficiency without compromising accuracy or security. (2) Minimizing the size of lookup tables required for non-linear functions, by optimizing activation ranges through neural teleportation, a novel adaptation for narrowing activation functions’ range. TeleSparse reduces prover memory usage by 67% and proof generation time by 46% on the same model, with an accuracy trade-off of approximately 1%. We implement our framework using the Halo2 proving system and demonstrate its effectiveness across multiple architectures (Vision-transformer, ResNet, MobileNet) and datasets (ImageNet,CIFAR-10,CIFAR-100). This work opens new directions for ZK-friendly model design, moving toward scalable, resource-efficient verifiable deep learning.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold