
Summary: Cographs are complete graphs with colored lines (edges); in an intersection cograph, the points (vertices) and lines (edges) are labeled by sets, and the line between each pair of points is (or represents) their intersection. This article first presents the elementary theory of intersection cographs: 15 are possible on 4 points; constraints on the triangles and quadrilaterals; some forbidden configurations; and how, under suitable constraints, to generate the points from the lines alone. The mathematical theory is then applied to aesthetics, using set cographs to describe the experience of a person enjoying a picture (Mu Qi), poem (Dickinson), play (Shakespeare), or piece of music (Anna Magdalena Bach).
Graph labelling (graceful graphs, bandwidth, etc.), Mathematics and literature, finite geometry, graph theory, literature, graph labeling, Mathematics and music, music, Mathematics and visual arts, mathematical model, art, poetry
Graph labelling (graceful graphs, bandwidth, etc.), Mathematics and literature, finite geometry, graph theory, literature, graph labeling, Mathematics and music, music, Mathematics and visual arts, mathematical model, art, poetry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
