
pmid: 27117113
Monoclonal antibodies (mAbs) are biomolecules of great scientific and practical significance. In contrast to polyclonal antibodies from immune sera, they are homogeneous and monospecific, since they are produced by hybridoma cells representing a clone arising from a single cell. The successful technology was described for the first time in 1975; the inventors were later awarded the Nobel Prize. Currently, mAbs are broadly used as a research tool, in diagnostics and medicine in particular for the treatment of cancer or in transplantology. About 47 therapeutics based on monoclonal antibodies are now available in the US and Europe, and the number is still growing. Production of monoclonal antibodies is a multistage, time-consuming and costly process. Growing demand for these molecules creates space for research focused on improvements in hybridoma technology. Lower costs, human labor, and time are important goals of these attempts. In this article, a brief review of current methods and their advances is given.
Europe, Hybridomas, Neoplasms, Antibody Formation, Antibodies, Monoclonal, Humans, Antibody-Producing Cells
Europe, Hybridomas, Neoplasms, Antibody Formation, Antibodies, Monoclonal, Humans, Antibody-Producing Cells
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
