
We work in the smooth category: manifolds and maps are meant to be smooth. Let G be a finite group acting on a connected closed manifold X and f an equivariant self-map on X with flA fixpointfree, where A is a closed invariant submanifold of X with codim A >- 3. The purpose of this paper is to give a proof using obstruction theory of the following fact: If Xis simply connected and the action of G on X- A is free, then f is equivariantly deformable rel. A to fixed point free map if and only if the usual Lefschetz number L(fl (x A» = 0. As a consequence we obtain a special case of a theorem of Wilczynski (cf . [12, Theorem A] ~. Finally, motivated by Wilczynski's paper we present an interesting question concerning the equivariant version of the converse of the Lefschetz fixed point theorem.
Fixed points and coincidences in algebraic topology, finite group acting on a simply-connected closed manifold, Lefschetz number, Two-dimensional complexes (manifolds), equivariantly deformable, coefficient system, Finite groups of transformations in algebraic topology (including Smith theory), fixed point free G-map
Fixed points and coincidences in algebraic topology, finite group acting on a simply-connected closed manifold, Lefschetz number, Two-dimensional complexes (manifolds), equivariantly deformable, coefficient system, Finite groups of transformations in algebraic topology (including Smith theory), fixed point free G-map
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
