
arXiv: 2411.06487
Detecting Beyond Standard Model (BSM) signals in high-energy particle collisions presents significant challenges due to complex data and the need to differentiate rare signal events from Standard Model (SM) backgrounds. This study investigates the efficacy of deep learning models, specifically Deep Neural Networks (DNNs) and Graph Neural Networks (GNNs), in classifying particle collision events as either BSM signal or background. The research utilized a dataset comprising 214,000 SM background and 10,755 BSM events. To address class imbalance, an undersampling method was employed, resulting in balanced classes. Three models were developed and compared: a DNN and two GNN variants with different graph construction methods. All models demonstrated high performance, achieving Area Under the Receiver Operating Characteristic curve (AUC) values exceeding $94\%$. While the DNN model slightly outperformed GNNs across various metrics, both GNN approaches showed comparable results despite different graph structures. The GNNs' ability to explicitly capture inter-particle relationships within events highlights their potential for BSM signal detection.
Accepted for publication in APPB
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
