Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Contributions to Dis...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Contributions to Discrete Mathematics
Article . 2023 . Peer-reviewed
License: CC BY ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Confining the robber on cographs

Authors: Masood Masjoody;

Confining the robber on cographs

Abstract

In a game of Cops and Robbers on graphs, usually the cops' objective is to capture the robber---a situation which the robber wants to avoid invariably. In this paper, we begin with introducing the notions of trapping and confining the robber and discussing their relations with capturing the robber. Our goal is to study the confinement of the robber on graphs that are free of a fixed path as an induced subgraph. We present some necessary conditions for graphs $G$ not containing the path on $k$ vertices (referred to as $P_k$-free graphs) for some $k\ge 4$, so that $k-3$ cops do not have a strategy to capture or confine the robber on $G$ (Propositions 2.1, 2.3). We then show that for planar cographs and planar $P_5$-free graphs the confining cop number is at most one and two, respectively (Corollary 2.4). We also show that the number of vertices of a connected cograph on which one cop does not have a strategy to confine the robber has a tight lower bound of eight. Moreover, we explore the effects of twin operations---which are well known to provide a characterization of cographs---on the number of cops required to capture or confine the robber on cographs. Finally, we pose two conjectures on confining the robber on $P_5$-free graphs and the smallest planar graph of confining cop number of three.

Keywords

FOS: Computer and information sciences, confining cop number, Discrete Mathematics (cs.DM), Games on graphs (graph-theoretic aspects), 05C57, 91A46, train-chasing lemma, cographs, FOS: Mathematics, Mathematics - Combinatorics, Combinatorial games, \(P_k\)-free graph, Combinatorics (math.CO), game of cops and robbers, trapping cop number, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold