Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing random forests: spark implementations of random genetic forests

Authors: Sikha Bagui; Timothy Bennett;

Optimizing random forests: spark implementations of random genetic forests

Abstract

The Random Forest (RF) algorithm, originally proposed by Breiman et al. (1), is a widely used machine learning algorithm that gains its merit from its fast learning speed as well as high classification accuracy. However, despiteits widespread use, the different mechanisms at work in Breiman’s RF are not yet fully understood, and there is stillon-going research on several aspects of optimizing the RF algorithm, especially in the big data environment. To optimize the RF algorithm, this work builds new ensembles that optimize the random portions of the RF algorithm using genetic algorithms, yielding Random Genetic Forests (RGF), Negatively Correlated RGF (NC-RGF), and Preemptive RGF (PFS-RGF). These ensembles are compared with Breiman’s classic RF algorithm in Hadoop’s big data framework using Spark on a large, high-dimensional network intrusion dataset, UNSW-NB15.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!