
The increasing threat landscape of Distributed Denial-of-Service (DDoS) attacks makes network security a major concern. These attacks are a serious challenge to the stability and integrity of digital infrastructures. This research paper is an in-depth study on how to enhance network security through the detection and mitigation of DDoS attacks. The study reviews existing literature on DDoS attack mitigation strategies, emphasizing the evolving nature of these threats and the imperative for robust defense mechanisms. The research uses statistical analysis and logistic regression to provide a detailed methodology for distinguishing DDoS attacks from normal network activities. The results show that logistic regression is an effective classification model, providing insights into improved detection measures. Finally, the study concludes by recommending a multi-faceted approach that combines theoretical insights with empirical validation, highlighting the need for stronger network security measures against DDoS attacks and enhancing digital resilience.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
