
doi: 10.54216/ijns.190202
Hypersoft topology (HST) is the study of a structure based on all hypersoft (HS) sets on a given set of alternatives. In continuation of this concern, in this article, we introduce new maps namely HS continuous, HS open, HS closed, and HS homomorphism. We examine the main characteristics of each of these maps. Furthermore, we study HS compact space and discuss some of its properties. We point out that HS compactness preserved under HS continuous map.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
