Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Revista de Engenhari...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Revista de Engenharia Térmica
Article . 2003 . Peer-reviewed
Data sources: Crossref
Revista de Engenharia Térmica
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CFD STUDIO: AN EDUCATIONAL SOFTWARE FOR CFD ANALYSIS

Authors: Ricardo Ferraz; Romeu André Pieritz; Clovis R. Maliska; Rafael Mendes;

CFD STUDIO: AN EDUCATIONAL SOFTWARE FOR CFD ANALYSIS

Abstract

The main goal of this paper is to demonstrate the general characteristics of the educational user-friendly CFD Studio package for CFD teaching. The package was designed for teaching 2D fluid mechanics and heat transfer process, including conduction, coupled conduction/convection, natural and forced convection, external and internal flows, among other phenomena. The finite volume methodology and its related topics can also be taught using the software. Therefore, general aspects of the three main modules, pre-processor, solver and post-processor are discussed aiming to show the generality of the tool. These modules are integrated in the application by a so-called “numerical problem project” which guide the student through the steps to obtain the solution. To approximate the partial differential equations the finite volume approach is employed using a fully-implicit formulation with the interpolation schemes CDS, UDS and WUDS. Mesh editing and nonorthogonal boundary-fitted mesh generation, using algebraic interpolation and elliptic equations, are important features of the package. Coupled heat transfer problems are handled using the “solid-block” formulation and the pressure-velocity coupling uses the SIMPLE and SIMPLEC methods with non-staggered grids. To demonstrate the capabilities two fluid flow and heat transfer “problem projects” are presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze