Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquatic Science and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aquatic Science and Technology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aquatic Science and Technology
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/sx...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/nx...
Other literature type . 2020
Data sources: Datacite
versions View all 3 versions
addClaim

Priority Areas for Water Resources Conservation: Study Case Canal Guandu Watershed

المجالات ذات الأولوية للحفاظ على الموارد المائية: دراسة حالة مستجمعات مياه قناة غواندو
Authors: Jonas Nunes Vieira; Helena Saraiva Koenow Pinheiro; Mateus Marques Bueno; Waldir de Carvalho; N. R. Pereira; Daniel Costa de Carvalho; Paula Fernanda Chaves Soares;

Priority Areas for Water Resources Conservation: Study Case Canal Guandu Watershed

Abstract

The environmental resilience is strictly dependent of water availability. The identification of priority areas is important to conservation aid land-use planning and urban expansion, conservation, and policy strategy. The goal was to identify priority areas aiming water provision and environmental conservation at the “Canal do Rio Guandu” watershed in Rio de Janeiro, Brazil. To address the goal four micro-basins included in the watershed were selected to optimize collect field data and create the criteria to define the priority levels. Based on prior literature, legacy and field data, an assessment method was proposed based on map algebra with support of Geographical Information System, gathering professional tacit knowledge with spatial data to support the selection of strategic areas. The approach based on was successful to select primarily priority areas and can contribute to regulate the local policies, pointing out areas that can connect legally protected areas with forested fragments, which presents great importance to urban and rural supply.

Keywords

Water Demand, Optimal Operation of Water Resources Systems, Ocean Engineering, Watershed area, Environmental science, Identification (biology), Engineering, Field (mathematics), Machine learning, FOS: Mathematics, Water Resources Management and Environmental Planning, Business, Environmental resource management, Biology, Water Science and Technology, Environmental planning, Global and Planetary Change, Global Analysis of Ecosystem Services and Land Use, Geography, Ecology, Physics, Pure mathematics, Watershed, Watershed management, Computer science, Water resource management, Resilience (materials science), FOS: Biological sciences, Physical Sciences, Environmental Science, Thermodynamics, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid