Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lazarus Stars: Modeling and searching for engineered stars

Authors: Scoggins, Matthew T.;

Lazarus Stars: Modeling and searching for engineered stars

Abstract

The aging and gradual brightening of the Sun will challenge Earth’s habitability in the next few billion years. If life exists elsewhere in the Universe, the aging of its host star similarly poses an existential threat. One solution, which we dub a Lazarus star, is for an advanced civilization to remove (or star-lift) mass from their host star at a rate that offsets the increase in luminosity, keeping the flux on the habitable planet(s) constant and extending the lifetime of their star. While this idea has existed since 1985 when it was first proposed by Criswell, numerical investigations of star-lifting have been lacking. Here, we use the stellar evolution code MESA to find mass vs. age and ¤𝑀 vs. age relations which would hold the flux on surrounding planets constant. We explore initial mass ranging from 0.2 M⊙ to 1.2 M⊙ . For most stars with a mass initially below about 0.4M⊙ , we find that star-lifting increases their main-sequence lifetimes up to 500 Gyr until they approach the hydrogen burning limit and star-lifting is no longer possible. For more massive stars, star-lifting increases main-sequence lifetimes by 1 Gyr to 100 Gyr, though they still enter the red-giant phase. For example, a Sun-like star has a main- sequence lifetime which can be increased by up to 3 Gyr. This requires a mass-loss rate of about 0.05 MCeres per year. We compare star-lifting to other survival strategies and briefly discuss methods for detecting these engineered stars

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 20
  • 19
    views
    20
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
19
20
Green