Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

Plasmonically enhanced fluorescence of Archaerhodopsin-based GEVIs

Authors: Locarno, Marco; Thieme Schmidt; Nidas Brandsma; Sebbe Blokhuizen; Meng, Xin; Srividya Ganapathy; Brinks, Daan;

Plasmonically enhanced fluorescence of Archaerhodopsin-based GEVIs

Abstract

Among the most common causes of death in the world, neurological diseases are one of the heaviest burdens for humanity. To guarantee a better quality of life, we would like to understand them and cure them. Genetically Encoded Voltage Indicators (GEVIs) are powerful optogenetic tools that enable the all-optical measurement of membrane potential in neurons. However, visualizing the subcellular localization of these fluorescent proteins is limited by the diffraction of light. Because of this strict limit, accurate modeling of the electrical signals in dendritic spines and subcellular structures is still a subject of debate. Plasmonic enhancement using gold nanoparticles is a promising novel solution to selectively obtain optical signals reporting synaptic transmission. The coupling between gold nanoparticles and fluorescent proteins can lead to locally higher quantum yields and consequently to brighter diffraction-limited spots. In this work a complete approach from simulations to biological application has been taken. Colloidally grown gold nanostars have been characterized, computationally modelled and tested on HEK cells expressing an Archaerhodopsin-based GEVI. The results discussed highlight the tunability and the stability of such nanoparticles, as well as some practical limitations to overcome in future experiments. The proof-of-principle could unlock a novel, powerful tool for neuroscience.

Related Organizations
Keywords

gold nanoparticles, all-optical electrophysiology, plasmonics, genetically encoded voltage indicators (GEVIs), voltage imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 34
    download downloads 22
  • 34
    views
    22
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
34
22
Green
Related to Research communities