Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Advanced Research
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THERMODYNAMIC BASED AQUEOUS SOLVATION AND DISSOCIATION OF BENZOIC ACID

Authors: Mishra, Shiv Prakash; R.P. Singh;

THERMODYNAMIC BASED AQUEOUS SOLVATION AND DISSOCIATION OF BENZOIC ACID

Abstract

In article, we have reported a thermodynamic based study of aqueous solvation of benzoic acid (C6H5COOH) at 288 to 318 Kelvin temperature. At this temperature range the dissociation constant (Ka) of benzoic acid into aqueous solvent has been determined by applying of titration method against standard basic solution of NaOH at different ionic strength of NaCl. Although, in observation, the value of Ka is being inversely proportional in respect of temperature in between 289 K to 303 K, and at higher temperature in between 303 K to 314 K, it being directly proportional. This reports that, there are no regular correlation in between temperature and Ka of that acid. Graphically, the plot has shown the value of Ka of benzoic acid is being 4.176 at 298 K temperature. In finding of precious results for benzoic acid solvation and its dissociation into water the applying Vant Hoff equation with Gibbs free energy change relationship (∆G = ∆H - T∆S) for reaction (endothermic or exothermic) process at standard condition of thermodynamic parameters as in terms of enthalpy (H) and entropy (S). Where, the thermodynamic parameters value (in kJ.mol-1) are being as ∆G = 12.507, ∆H = 3.823 and ∆S = -29.14, but, at 298 K it is show that, the acid dissociation into aqueous is an endothermic process and non-spontaneous.

Keywords

Benzoic Acid Ionic Strength Salvation Dissociation Constant Thermodynamic Parameters

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 8
  • 2
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
8
Green
gold