
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In the Baoule language, several sentences express the same fact. Classification of sentences is a task of Natural Language Processing (NLP). Deep learning has turned out to be a kind of method that has a significant effect in this area. In this paper, we propose a convolutional neural network (CNN) based system for sentence classification. We introduce into this system a word representation model to capture semantic characteristics by encoding the frequency of terms and segmenting the sentence into clauses. The experimental results show that our system produces satisfactory results.
Classification of Sentences CNN Frequency of Terms Segmentation
Classification of Sentences CNN Frequency of Terms Segmentation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 8 | |
downloads | 11 |