Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural Assessment of Reinforced Concrete Beams Strengthened with CFRP Laminates

Authors: Aayush Mehra¹, Kavita Chauhan², Deepesh Raturi³;

Structural Assessment of Reinforced Concrete Beams Strengthened with CFRP Laminates

Abstract

Carbon Fiber Reinforced Polymer (CFRP) laminates have become a widely accepted solution for strengthening and retrofitting reinforced concrete (RC) beams due to their high tensile strength, corrosion resistance, and ease of installation. This study presents an experimental evaluation of RC beams strengthened externally with CFRP laminates using epoxy bonding. A total of eight beams were cast and tested under two-point loading, including control beams and beams strengthened with different CFRP configurations such as single-layer, double-layer, and U-wrap anchorage. Structural parameters including load-carrying capacity, mid-span deflection, cracking pattern, stiffness, and failure modes were systematically analyzed. The results show that CFRP strengthening significantly enhances flexural capacity, delays crack initiation, and improves overall stiffness. The double-layer CFRP configuration exhibited up to 42% higher load-carrying capacity compared to the control beam, while U-wrap anchorage minimized premature debonding. The study confirms that CFRP laminates offer an efficient and practical strengthening method for extending the service life of RC structures.

Keywords

CFRP Laminates; Reinforced Concrete Beams; Flexural Strengthening; Epoxy Bonding; Structural Retrofitting; Load-Carrying Capacity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!