Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 36 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Observational Equivalence as the Foundation of Physical Reality

Authors: Hwang, Seokhyun;

Observational Equivalence as the Foundation of Physical Reality

Abstract

Theory of Equivalence (ToE) presents a mathematically consistent and physically complete framework that satisfies all five indispensable conditions traditionally required for a true Theory of Everything. Mathematical and Logical Consistency:The framework ensures unitarity, causality, Lorentz/general covariance, and removes all gauge, mixed, and global anomalies. Ultraviolet (UV) completeness is achieved non-perturbatively, with renormalizability at all orders established within a closed set of 26 constants. Low-Energy Reproduction:At the low-energy limit, the theory reproduces both the Standard Model (SU(3)×SU(2)×U(1))(SU(3)\times SU(2)\times U(1))(SU(3)×SU(2)×U(1)) gauge structure—including chirality, mixing patterns, and neutrino oscillations—and General Relativity, complete with classical tests and black hole thermodynamics (entropy, information recovery). Unified Quantum Gravity:Gravitational spin-2 modes and matter fields emerge in a unified operator algebra, with spectral geometry providing background independence. Quantum gravitational dynamics are implemented consistently with matter and gauge interactions. Predictivity and Falsifiability:The theory yields quantitative predictions—such as precise fermion mass ratios, Higgs and top masses, neutrino parameters, gravitational redshift corrections, and novel gravitational-wave polarizations—that are testable in ongoing or near-future experiments (COMET II, OLC, ET/CE detectors). Non-Perturbative Definition:The model is defined fundamentally through operator algebra and spectral triples, with time evolution governed by a GKSL generator. This provides a Hilbert-space, non-perturbative foundation beyond perturbative expansions or effective field approximations. Taken together, these results demonstrate that the Theory of Equivalence fulfills all five indispensable criteria, establishing it as a genuine candidate for a Theory of Everything.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!