
Summary: We strengthen a result of Jones by showing that for any positive integer \(P\), the Lucas sequence \((U_n)_n\) defined by \(U_0 = 0\), \(U_1 = 1\), \(U_n=P \cdot U_{n -1} + U_{n - 2}\) can be translated by a positive integer \(K(P)\) such that the shifted sequence with general term \(U_n + K(P)\) contains no primes, nor terms one unit away from a prime.
Fibonacci and Lucas numbers and polynomials and generalizations, Primes
Fibonacci and Lucas numbers and polynomials and generalizations, Primes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
