Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orbital Misalignment Of The Gj 436B Exoplanet. Constraints On The Kozai Migration Scenario

Authors: Beust, Hervé; Bourrier, Vincent; Lovis, Christophe; Ehrenreich, David;

Orbital Misalignment Of The Gj 436B Exoplanet. Constraints On The Kozai Migration Scenario

Abstract

Kozai-Lidov mechanism is a major source of dynamical evolution in multiple stellar systems and in young planetary systems with large mutual inclinations. It drives orbital eccentricities to very high values while keeping semi-major axes constant, thus reducing periastron distances. Furthermore, tidal friction at periastron acts at shrinking orbits and generating misaligned close-in planets and tight pairs in triple stellar systems. GJ 436b is a short period transiting Neptune-mass exoplanet orbiting an M dwarf on a surprisingly eccentric orbit. Tides should have already circularized its orbit. In an earlier study (Beust et al. 2012, A&A 545, A88), we showed that Kozai migration combined with tides could have delayed the circularization of this planet and explain the residual eccentricity. This model implies the presence of another yet unknown body at larger distance in this system. It also predicts that GJ 436b's orbital plane should be tilted with respect to the stellar equator. We report here the recent detection of this spin-orbit misalignment, derived by mapping the spectrum of the stellar protosphere along the chord transited by the planet. GJ 436b orbits nearly perpendicularly to the stellar equator (Bourrier et al. 2018, Nature 553, 477). This result reinforces the 2012 hypothesis, and allows us to derive additional constraints on the dynamical model, in particular concerning the mass and the distance of the hypothetical perturber. The inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 2
  • 2
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
2
Green
Related to Research communities