Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Presentation . 2015
Data sources: Datacite
ZENODO
Presentation . 2015
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The best of both worlds: highlighting the synergies of combining knowledge modelling and automated techniques to improve information search and discovery in oil and gas exploration

Authors: Cleverley, Paul; Burnett, Simon;

The best of both worlds: highlighting the synergies of combining knowledge modelling and automated techniques to improve information search and discovery in oil and gas exploration

Abstract

 Research suggests organizations across all sectors waste a significant amount of time looking for information and often fail to leverage the information they have. In response, many organizations have deployed some form of enterprise search to improve the ‘findability’ of information. Debates persist as to whether thesauri and manual indexing or automated machine learning techniques should be used to enhance discovery of information. In addition, the extent to which a Knowledge Organization System (KOS) enhances discoveries or indeed blinds us to new ones remains a moot point. The oil and gas industry is used as a case study using a representative organization. Drawing on prior research, a theoretical model is presented which aims to overcome the shortcomings of each approach. This synergistic model could help to re-conceptualize the ‘manual’ versus ‘automatic’ debate in many enterprises, accommodating a broader range of information needs. This may enable enterprises to develop more effective information and knowledge management strategies and ease the tension between what are often perceived as mutually exclusive competing approaches. Certain aspects of the theoretical model may be transferable to other industries, which is an area for further research.

Related Organizations
Keywords

enterprise search, knowledge modelling, automatic indexing, oil and gas industry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!