
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>如果您有任何问题,欢迎您联系第一作者。(电子邮件:panqian@whu.edu.cn) 本文重点介绍了使用62列特征参数作为MLP和BiLSTM积分获得的模型的输入来预测热层质量密度。只有 Swarm 卫星数据用于模型的训练、验证和测试。 一、数据集 或者,您可以创建自己的数据集,该数据集由 62 列输入参数和 1 列输出参数(热层质量密度)组成,如文中所述,所有参数的分辨率线性插值为 10 秒均匀。总体时间范围为2014.02.01-2020.09.30。我们也提供生成的数据集,但由于数据集较大,因此将其拆分为多个文件(subset_i),使用时可以自行合并。 二、守则 模型框架在“模型framework.bmp”中进行了描述,有关详细说明,请参阅本文的模型构造部分,有关具体代码,请参阅 model.ipynb。 三、运行环境 我们使用的是 WHU 超级计算机,操作系统:64 位 CentOS 7.5 Linux,64 架构。python版本:3.7.13 框架:tensorflow、keras 运行程序所需的软件包: import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from datetime import datetime from tensorflow.keras.models import Model,load_model from tensorflow import keras import keras as K from keras.layers.core import Heavy from sklearn.metrics import mean_absolute_error from sklearn.metrics importmean_squared_error 将 matplotlib.pyplot 导入为 plt from sklearn.model_selection import KFold from tensorflow.keras.callbacks import ModelCheckpoint from keras.loss import mean_squared_error import backend from tensorflow.keras.layers import 双向导入时间
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
