Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of mechanistic pathways in cross-linking reactions with palladium

Authors: Zaman Abdalhussein Ibadi Alaridhee; Nada Hasan; Muhand Dohan Abid; Ali Jabbar Radhi; Ahmed Wheed Radhi;

Study of mechanistic pathways in cross-linking reactions with palladium

Abstract

Palladium-catalyzed cross-coupling reactions, including the Suzuki, Stille, and Negishi couplings, have emerged as essential methodologies in contemporary organic synthesis. Nevertheless, there is still a lack of comprehensive understanding of the molecular processes involved in these significant events that lead to the formation of C-C and C-heteroatom bonds. This paper provides a complete analysis of the fundamental mechanistic investigations conducted on the primary cross-coupling processes facilitated by palladium catalysts. The present study focuses on the examination of kinetic aspects of several stages within the catalytic cycle, namely oxidative addition, transmetalation, and reductive elimination, in the context of diverse palladium-catalyzed coupling reactions. This paper examines the influence of ligands, substrates, reaction conditions, and additives on the kinetics and mechanism of the reaction. This study emphasizes the significance of computational investigations in enhancing our understanding of Pd catalyst speciation and the architectures of intermediates. This study aims to identify both overarching patterns and variations in the systems under investigation. Additionally, the present obstacles in comprehensively understanding the specific intricacies of these mechanisms are delineated. A comprehensive comprehension of catalytic pathways will serve as the fundamental basis for the development of enhanced Pd catalysts and the expansion of these reactions to novel substrates. The inclusion of mechanistic information will provide valuable insights to develop more efficient catalytic systems based on palladium.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!