
In this paper, we introduce the concept of ordered quasi-hyperideals of regular ordered semihypergroups, and study the basic results on ordered quasi-hyperideals of ordered semihypergroups. We also investigate regular ordered semihypergroups in terms of its ordered quasi-hyperideals, ordered right hyperideals and ordered left hyperideals. We prove that: (i) A partially ordered semihypergroup S is regular if and only if for every ordered bi-hyperideal B, every ordered hyperideal I and every ordered quasi-hyperideal Q, we have B ∩ I ∩ Q ⊆ (B ◦ I ◦ Q], and (ii) A partially ordered semihypergroup S is regular if and only if for every ordered quasi-hyperideal Q, every ordered left hyperideal L and every ordered right-hyperideal R, we have R ∩ Q ∩ L ⊆ (R ◦ Q ◦ L].
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
